Ham 38 - Impedance, Attenuation & DC block

Dr. Marc & Rosemary © 220404

1. Nerd Alert:

- a. This is a topic that requires several calculations. The most difficult is multiply or divide.
- b. The design includes all the electrical topics encountered on the Technician exam.
- c. You passed that, so I know you can do this.
- 2. Audio has speaker or headphone output and microphone input. But then things get interesting.
 - a. A typical speaker impedance (Z) operates at 8 Ω (Ohms). Headphone impedance is 30-60 Ω .
 - b. Electret microphones are nominal 800 Ω . Other type mics operate with impedance for their purpose.
 - c. Electret has a voltage applied to the mic to energize. Icom applies 8 Vdc with current of 10 ma.
- 3. Rules of thumb for connection.
 - a. Amateur equipment is voice only with range of 300 3000 Hz.
 - b. Music has a range of 20 20,000 Hz.
 - c. The mics and speakers for music and voice are not interchangeable with equal performance.
 - d. Output Z of the source must be lower than input Z of the equipment.
 - e. If mic has low Z and equipment has high Z, the mic likely will have inadequate energy to drive the input.
 - f. Maximum power transfer occurs with the source matches the load.
 - g. If using other than electret, place a large disk capacitor in series with the mic input to remove the Vdc.
 - h. Capacitance must be large enough to pass low frequency voice, (~1 μ Fd).
 - i. Attenuation and impedance matching is easiest with a voltage divider, which is a 'T' network.
- 4. If creating a remote-control radio, connect the audio out from the radio to the computer.

4.	If creating a remote-control radio, connect the audio out from the radio to the computer.	
	a. The attenuator resistor equals the impedance of the opposite port	$R_2 = Z_{in}$
	b. The sum of $R_1 + R_2 = Z_{out}$, so $R_1 = Z_{out} - R_2$.	$R_1 = Z_{out} - Z_{in}$
	c. The resistors create a voltage divider which attenuates V _{in}	
	d. The series current depends on the voltage of audio in	$V_{in} = (R_1 + R_2) I_{in}$
	e. By substitution, the output voltage depends on the resistor ratio.	$V_{out} = R_2 / (R_1 + R_2) V_{in}$
	f. Check that the output current is low enough to protect the circuit.	$V_2 = R_2 * I_{out}$
5.	Attenuation in decibels (dB) depends on the ratio of Vi_n / V_{out} .	
	a. The input output voltage ratio depends on the same resistor ratio	$V_{in} / V_{out} = (R_1 + R_2) / R_2$
	b. The decibels are defined.	$dB = 20 \log_{10} \left(V_{in} / V_{out} \right)$
6.	Consider an input from a speaker port (8 Ω) and an output to an electret port (800 Ω).	
	a. Size resistor R_2	$R_2 = 8$
	b. Size resistor R_1	$R_1 = 800 - 8 = 792$
	с.	
	d. Series current	$V_{in} = 792 I_{in}$
	e. Output voltage	$V_{out} = 8 / 800 V_{in} = 0.01 V_{in}$
	f. Works even for a line voltage of 1 V, 1 ma	$V_2 = 8 * I_{out}$
	Attenuation	
	a. Voltage ratio	$Vi_n / V_{out} = 800 / 8 = 100$

$$dB = 20 \log_{10} (100) = 40$$

7. The diagram shows a connection interchange between the computer and radio.

a. Preferably build on a circuit board, but the connections are simple enough to hand wire.

b. dB.....

- 8. Consider constructing for a headphone as source feeding an electret mic input.
 - a. R_2 is 45, $R_1 = 800 45 = 755$, $V_{out} = .056 V_{in}$, $I_{out} = .056/45 = 1$ ma, dB = 25.
 - b. To assure a lower impedance is feeding into a higher, use R for headphone.

