Ham 110 – Antenna Dipole, Simply the Simplest Dr. Marc & Rosemary © 230615

1. An antenna system consists of the radiator, return, and transmission line. All antennas are a compromise.

- a. The radiator is usually called the antenna. The return may be earth, ground plane, or counterpoise.
- b. On 2-meters and higher frequencies, small, commercially made antennas dominate.
- c. On longer wavelengths (low frequency), hams must build antennas to fit the location.

d. This is not hokum. This is the science. We have modelled, built, and measured on multiple bands.

- 2. Dipole is a long-conductor (wire, tube) with one-half length as radiator and one-half as return.
 - a. Use a coax connector or banana-plug. Connect the radiator to the center and the return to the frame. That's it.
 - b. The resistance is about 75-Ohms.
 - c. That is close enough to the coax of $50-\Omega$ for a SWR about 1.9. Your radio can handle that.
 - d. A simple dipole gain is about 6.1 dBi. With reflectors, stacked, and tweaked, 12 dBi is possible.
 - e. AWG #12 insulated wire is self-supporting. Stranded is more flexible for outdoor, while solid holds its shape.
 - f. What is not to like? A dipole is a single-band antenna. The SWR curves show a huge single dip.
- 3. Anything that can change impedance, changes performance. Shape changes capacitance and inductance.
 - a. Tuning is capacitive X_C equal to inductive reactance X_L . Matching is impedance of antenna equal to coax Z_0 .
 - b. Reactive near field <0.16 λ , near field <1 λ , transition zone >1 λ <2 λ , far field >2 λ .
 - c. Height is critical. More height improves gain. Height in far field gets out of ground effect. Easy UHF, cannot HF.
 - d. Nearby conductive material like metal or solid reflective surfaces like buildings are major impactors.
 - e. Whether free-space, grounded, or counterpoise, the return changes the pattern and impedance.
- 4. Horizontal polarization is more skywave. Vertical is more local. Curvature of earth changes signals.
 - a. For 10-meter, with $\lambda/4 = 8.32$ ft, horizontal mounted at eave height of 15', the max take-off angle is 33 degrees.
 - b. For 10-meter, with $\lambda/4 = 8.25$ ft, vertical with connector height of 15', the take-off is 13 degrees but little gain.
- 5. With a single-point toward earth, vertical does not couple to earth very well. So, it requires a good ground plane.
 - a. Opposite polarization makes a single-point signal intersection that decreases signal 18 dB.
 - b. For practical HF, horizontal is easier to build and has more gain.
- 6. The table lengths are approximately one-quarter wave, adjusted to minimize mid-band SWR.
 - a. They are from Eznec models for 15' high horizontal. Tweak for your conditions.
 - b. Radiators with larger diameter compared to wavelength gives wider bandwidth.
 - c. The bandwidth on 80-meters is very skinny, even with $\frac{1}{2}$ " tubing.
- 7. Life is good. Enjoy!

MHz	λ-m	λ/4-ft
442 - 450	0.7	0.51
144 - 148	2	1.6
50 - 54	6	4.5
28.0 - 29.7	10	8.3
21 - 21.45	15	11.15
14.0 - 14.35	20	16.7
7.0 - 7.3	40	33.0
3.5 - 4.0	80	63.8

λ/4

λ/4

Dipole

Gnd