Ham 112 – HF 20 meters, good day & night Dr. Marc & Rosemary © 230618

- 1. Ham is about communicating. What is the best band? For what?
 - a. The First Law of Thermodynamics (Nature) says 'sum of the energy is zero', i.e., there is no free lunch.
 - b. For local, line-of-sight (LOS), 70cm UHF is very good, because antennas are small. But the range is very limited.
 - c. UHF has wide bandwidth, so lots of data can be sent.
 - d. For portable and HOA friendly antennas, we use VHF and UHF repeaters.
 - e. Range is still limited to about 25 miles, and very susceptible LOS blockage and noise.
- 2. For long distance, HF is very good, but antennas are huge and meteorology conditions change radiation.
 - a. HF is very narrow bandwidth, so messages are simple.
 - b. Next, we addressed 6-m VHF and 10-m HF, since they are similar.
 - c. Their range is about same as VHF repeater without intermediate equipment to purchase, maintain, and control.
 - d. 80-m antennas are very long and have skinny bandwidth.
 - e. 80-m is great at night with very long range. NVIS antennas make it local.
 - f. 40-m is good day and night. During day, base to mobile range is 500 miles.
 - g. Evening skip is cross-country to across the world.
 - h. Several other HF bands exist and are used to experiment.
- 3. 20-m is long range day and evening. It is the best DX-band.
 - a. A simple horizontal dipole should work 5,000 miles.
 - b. It is the preferred distance band for mobile, marine, RV, and base.
 - c. Voice is USB (upper sideband).
- 4. All antennas will have a return path.
 - a. See antenna articles for how to protect from lightning and mitigate noise.
 - b. Grounding dipole at connector increases gain by 0.4 dB and lowers take-off angle 2 degrees.
 - c. Grounding lowers impedance over 2Ω and lowers SWR to 1.7.
- 5. Raising the end of radiator, while leaving return horizontal, improves performance.
 - a. Raising 8 feet causes impedance drop to 78, lowering SWR to 1.6.
 - b. Gain raises to 6.4 dBi and takeoff angle lowers to 48.
- 6. What is not to like? It is a very good distance antenna with less local.
- 7. EzNec model:
 - a. Antenna length $\approx \lambda/4$. Return $\approx \lambda/4$. Configuration horizontal. Source is 0% on wire 2.
 - b. Gain = 6.07 dBi, with angle of 54 degrees, which gives long range.
 - c. Impedance is $88-\Omega$ on the capacitive side, making SWR about 1.9, which your transmitter will handle.
- 8. Experiment to find lower take-off angle.
- 9. Life is good. Enjoy!

WIRES											
No.	End1			End 2				Dia	Segs	Use	
	X (ft)	Y (ft)	Z (ft)	Conn	X (ft)	Y (ft)	Z(ft)	Conn	(in)		
1	0	0	20	W3E1	0	16.7	20	W2E1	#12	199	return
2	0	16.7	20	W1E2	0	33.2	20		#12	199	radiate
3	0	0	14	W1E1	0	5	14		#12	17	ground

MHz	λ-m	λ/4-ft
442 - 450	0.7	0.51
144 - 148	2	1.6
50 - 54	6	4.5
28.0 - 29.7	10	8.3
21 - 21.45	15	11.15
14.0 - 14.35	20	16.7
7.0 - 7.3	40	33.0
3.5 - 4.0	80	63.8

