Ham 114 – HF Antenna Observations and Musings Dr. Marc & Rosemary © 230619

- 1. The musings are not for faint of heart. These are references and to compare, not to build.
 - a. These model variations are for 6-m (λ =227") with transmission connection at 12'.
 - b. Antenna systems have a radiator, return (radial or counterpoise), and transmission line.
 - c. Elevation, length, and return dramatically impact impedance, gain, and angle.
 - d. Lightning, noise, and safety need the return grounded for DC & low frequency.
 - e. The high frequency return connects to the same point. These paths are parallel.
- 2. The electrical circuit for an antenna is just an inductor (L) and capacitor (C).
 - a. Geometry, distance (length), and cross-sectional area determines if an antenna is more inductor or capacitor.
 - b. Resistance (opposition to current) of wire creates loss and heat, while radiated resistance creates output power.
- 3. The field strength from an antenna depends on distances relative to the wavelength of the frequency.
 - a. *Reactive* near field $<0.16\lambda$, *near* field $<1\lambda$, *transition* zone $>1\lambda <2\lambda$, *far* field $>2\lambda$.
 - b. Field strength decreases linearly with distance. Field density decreases by square, and energy decreases by cube.
- 4. Tuning an antenna is more art than science.
 - a. For HF with reflected waves, horizontal and vertical polarization means little.
 - b. The orientation of a dipole-return matters little as long as it is parallel to ground.
 - c. Bending and redirecting the radiator to fit the site can be compensated.
 - d. Bending the radial raises Z, SWR, gain, & angle \approx
- 5. Radials are the return. Droop 45 degrees to increase impedance.
 - a. Wavelength of $\lambda/4$ is a starting length, not destination. $\lambda/12$ appears optimum for trade-offs.
 - b. Decreasing length of radials requires increasing length of radiator to resonate.
 - c. 1/4 radial $\approx .25$ radiator, 1/8 radial $\approx .28$ radiator, 1/12 radial $\approx .31$ radiator, 1/20 radial $\approx .35$ radiator.
 - d. For antenna return height less than 2λ above earth, then it is in ground effect (not far field).
 - e. For low return height, the ground wire must be a resonant length such as 1λ . Loosely separate the excess.
- 6. Meander lines antennas for Wi-Fi and cell are a flat-line on the circuit board to avoid windings. Works on 6-m too.
 - a. The meander is very much like a close coupled coil. It increases j from negative to positive.
 - b. Use small conductor size compared to wavelength. AWG 14 keeps in band while 1/2" tubing is terrible.
- 7. Verticals have two-lobes: about 11 degrees with 1.5 dB and 40 degrees with 3 dB.
- 8. Life is good. Enjoy!

#	type	polar	grnd	reson	radiat	offset	rad#	long	λ	Unun	AddZ	SWR	Z	R+jX	dB	deg	lobe2
1	dipole	horiz	n		54		1	54	1/4			1.3	80.8	54.1-j60	7.7	22	
2	droop	horiz	у		56		4	18	1/12			2.05	114	69.8-j90.5	1.6	26	wide
3	invL	Efhw	у		63 h	48 v	1	11.4	.05	56:1		1.2	1330	1327-j100	4.7	22	
4	dipole	vert			54		1	54	1/4			1.2	68.5	48.7-j48.2	2.7	12	45
5	L-ret	vert			56		1	56.75	1/4			1.4	43.2	31.6-j29.4	5.5	21	11
6	L-rout	vert			56.75		1	56	1/4			1.8	49.5	23.7-j43.6	2.3	11	37
6	droop	vert			53		4	56.75	1/4			1.05	52	46.4-j23.4	1.7	11	
7	"	vert			65		4	28.38	1/8			1.05	53	42.6-j31.7	2.0	11	
8	"	vert			72		4	18	1/12			1.2	67.5	50.1-j45.2	2.1	11	
9	"	vert			80		4	11.35	1/20			1.8	104.6	68.1-j79.4	2.2	11	
10	lobes	vert	у		53		4	56.75	1/4			1.05	49.1	45.0-j21.3	3.2	40	
11	"	vert	у		53		4	56.75	1/4			1.05	49.1	45.0-j21.3	1.5	11	
12	match	vert	у		56		4	18	1/12			2.4	106.9	79.9-j71.1	2.9	40	
13	"	vert	у		56		4	18	1/12	2:1		1.2	106.9	79.9-j71.1	2.9	40	
14	load	vert	у		54+1		4	18	1/12			2.8	103.7	91.1-j93.8	2.2	40	
15	"	vert	у		37+1		4	18	1/12		j200	2.1	113.8	78.6-j82	2.0	41	
16	res	vert	у	1λ	64		4	18	1/12			1.4	84.4	52.7-j66.0	2.4	12	
17	mean	vert	у	у		37x10	4	18	1/12			1.3	81.7	52.3+j62.8	1.5	14	

decreases by cube.								
MHz	λ-m	λ/4-ft						
50-54	6	4.5						
28.0 - 29.7	10	8.3						
21 - 21.45	15	11.15						
14.0 - 14.35	20	16.7						
7.0 - 7.3	40	33.0						
3.5 - 4.0	80	63.8						
1.8 - 2.0	160							

